Some Review Problems

(a)
$$\int \frac{x^2 + 5x + 2}{(x+1)(x^2+1)} dx$$
 (b) $\int \frac{x^5 + 2}{x^2 - 1} dx$ (c) $\int \frac{1}{x^2 + 10x + 29} dx$ (d) $\int \frac{1}{x^2 + 10x + 21} dx$

(b)
$$\int \frac{x^5+2}{x^2-1} dx$$

(c)
$$\int \frac{1}{x^2 + 10x + 29} dx$$

(d)
$$\int \frac{1}{x^2 + 10x + 21} dx$$

[2] Calculate $\frac{dy}{dx}$

(a)
$$y = (\sin x)^{x+5}$$

(b)
$$x^2y = x^3 + y \ln x$$

(b)
$$x^2y = x^3 + y \ln x$$
 (c) $y = \left[\ln(1+x^3)\right]^{\sqrt{x}}$

[3] (a) Calculate the integral $\int_3^7 \ln x \, dx$ by finding an antiderivative.

(b) Estimate the same integral using the "average" or trapezoidal method with 4 subintervals. (Your two answers should be close!)

[4]

(a)
$$\int \frac{t^6 - t^2}{t^4} dt$$

(b)
$$\int \cos^2(5x) dx$$

(a)
$$\int \frac{t^6 - t^2}{t^4} dt$$
 (b) $\int \cos^2(5x) dx$ (c) $\int \frac{1}{\sqrt{16 - 6x - x^2}} dx$ (d) $\int \frac{2x + 5}{\sqrt{16 - 6x - x^2}} dx$ (e) $\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$ (f) $\int x^2 \ln(x) dx$ (g) $\int \frac{x + 1}{x^2 + 1} dx$ (h) $\int_1^3 \frac{\cos(\ln(x))}{x} dx$

(d)
$$\int \frac{2x+5}{\sqrt{16-6x-x^2}} \, dx$$

(e)
$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$

(f)
$$\int x^2 \ln(x) dx$$

(g)
$$\int \frac{x+1}{x^2+1} \, dx$$

(h)
$$\int_1^3 \frac{\cos(\ln(x))}{x} \, dx$$

[5] Iron-55 has a half life of 2.7 years. How long will it take for a 100 gm sample of radioactive iron to decay to 20 gm?

[6] More fast breeding bacteria! Suppose we are culturing a population of bacteria with great skill so that the number of cells grows exponentially. After 2 hours there are 6×10^4 and after 8 hours there are 15×10^4 bacteria. How many were present originally? At what time had the population exactly doubled in number?

[7] (a)
$$\lim_{x\to\infty} \frac{x^2}{\ln x}$$

(b)
$$\lim_{x\to 0} \frac{3x-\sin x}{x}$$
 (c) $\lim_{x\to \infty} \frac{x-\ln x}{x^2}$ (d) $\lim_{x\to \pi} \frac{1+\cos x}{1+\sin x}$

(c)
$$\lim_{x\to\infty} \frac{x-\ln x}{x^2}$$

(d)
$$\lim_{x\to\pi} \frac{1+\cos x}{1+\sin x}$$

[8] Let $f(x) = \frac{x+1}{x^2}e^x$.

(a) Find the intervals where f is positive and where it is negative.

- (b) Show that the derivative is $f'(x) = \frac{x^2-2}{x^3}e^x$.
- (c) Find the intervals where f is increasing and decreasing.
- (d) Find and classify all the critical points. Provide the details and justifications.
- (e) Find the limits as x goes to $\pm \infty$.
- (f) Identify any vertical asymptotes.
- (g) **Sketch** the graph of f(x).