Interlude: Linear Program Formulations for Some Combinatorial Opti-Interlude: Linear Pro
mization Problems mization Problems
Linear Programming is a commonly taught and used form of optimization. In this area, one

Linear Programming is a commonly taught and used form of optimization. In this area, one
tries to maximize or minimize a linear objective function subject to linear inequality contraints. In
fact some Combinatorial Optimiz Linear Programming is a commonly taught and used form of optimization. In this area, one
tries to maximize or minimize a linear objective function subject to linear inequality contraints. In
fact some Combinatorial Optimiz tries to maximize or minimize a linear objective function subject to linear inequality contraints. In fact some Combinatorial Optimization problems can be recast as LP problems which can then be solved by standard LP algor fact some Combinatorial Optimization problems can be recast as LP problems which can then be
solved by standard LP algorithms. In some cases this is a fruitful approach, in others the number
of constraints required is so l solved by standard LP algorithms. In some cases this is a truitful approach, in others the number
of constraints required is so large that solving the problem as an LP is impractical. In this brief
interlude we will discus of constraints required is so
interlude we will discuss how
associated linear program.
Let $G = (V, E)$ be a d

associated linear program.
Let $G = (V, E)$ be a digraph where $V = \{v_1, v_2, \ldots, v_n\}$ is the set of vertices, and $E =$ associated linear program.
Let $G = (V, E)$ be a digraph where $V = \{v_1, v_2, \ldots, v_n\}$ is the set of vertices, and $E = \{e_1, e_2, \ldots, e_m\}$ is the set of arcs. The *incidence matrix M* of G is defined as follows. The rows of M Let $G = (V, E)$ be a digraph where $V = \{v_1, v_2, \ldots, v_n\}$ is the set of vertices, and $E = \{e_1, e_2, \ldots, e_m\}$ is the set of arcs. The *incidence matrix* M of G is defined as follows. The rows of M are indexed by the ve ${e_1, e_2, \ldots, e_m}$ is the set of arcs. The *incidence matrix* M of G is defined as follows. The rows of M are indexed by the vertices, and the columns of M are indexed by the arcs. The entries of M are all ± 1 or 0. If M are indexed by the vertices
are all ± 1 or 0. If $e_k = (ij)$ jo.
(*ij*) is assigned a weight w_{ij} . (ij) is assigned a weight w_{ij} .
Potentials and the single source Shortest Path problem

Consider the problem of finding a minimum weight dipath from a source vertex s to other vertices of G .

A vector $\vec{g} = [g_1, g_2, \dots, g_n]$ is called a *potential* with respect to the weight \vec{w} if

$$
g_j - g_i \le w_{ij} \tag{1}
$$

Note that the above system of inequalities (1) can be rewritten using the incidence matrix M as

$$
\vec{g}M \leq \vec{w}
$$

For each $v \in V$, let y_v be the weight of a minimum dipath from the source node s to a vertex v.
Suppose $P: s = v_0, v_1, \ldots, v_k = v$ is a dipath with weight y_v . Then we have

$$
y_v = \sum_{j=0}^{k-1} w_{v_j v_{j+1}} \ge \sum_{j=0}^{k-1} (g_{v_{j+1}} - g_{v_j}) = g_v - g_s
$$

On the other hand, \vec{y} itself is a potential (Exercise) and trivially $y_s = 0$, so

$$
y_v = y_v - y_s \ge g_v - g_s
$$

for any potential \vec{g} . Hence the value of y_v is given by the maximum potential.

Define a vector \vec{c} indexed by vertices with $c_v = 1, c_s = -1$, and $c_u = 0$ for all $u \in V - \{v, s\}.$ So $y_v - y_s = \vec{y} \vec{c}$ and $g_v - g_s = \vec{g} \vec{c}$. Then the following LP:

$$
\text{Maximize } \vec{g}\vec{c} \text{ subject to } \vec{g}M \le \vec{w} \tag{2}
$$

Maximize $\vec{g}\vec{c}$ subject to $\vec{g}M \leq \vec{w}$ (2)
has as its value the length y_v of a minimal dipath from s to v. In the LP there is one constraint for
each arc If the graph is reasonably sparse then this approach ma has as its value the length y_v of a minimal dipath from s to v . In the LP there is one constraint for each arc. If the graph is reasonably sparse then this approach may well lead to an efficient solution to the mini each arc. If the graph is reasonably sparse then this approach may well lead to an efficient solution to the minimal dipath problem.

The dual of the above LP is, with variable vector h indexed by arcs:

Minimize
$$
\vec{w} \vec{h}
$$
 subject to $M\vec{h} = \vec{c}, \quad \vec{h} \ge 0.$ (3)

Minimize $\vec{w}\vec{h}$ subject to $M\vec{h} = \vec{c}$, $\vec{h} \ge 0$. (3)
Each dipath P from s to v gives a feasible solution \vec{h}_P to this dual LP, which is called the
racteristic vector of P. It is defined by $h = 1$ for each Each dipath P from s to v gives a feasible solution \vec{h}_P to this dual LP, which is called the *characteristic vector* of P. It is defined by $h_e = 1$ for each arc $e \in P$, and $e = 0$ otherwise. Then \vec{wh}_P is the weig Each dipath P from s to v gives a feasible solution h_P to this dual LP, which is called the *characteristic vector* of P. It is defined by $h_e = 1$ for each arc $e \in P$, and $= 0$ otherwise. Then \vec{wh}_P is the weight of *characteristic vector* of P. It is defined by $h_e = 1$ for each arc $e \in P$, and $= 0$ otherwise. Then $w h_P$ is the weight of the dipath P. What LP Duality Theory tells us is that the minimum value of the dual LP is equal dual LP is equal to the maximal value of the primal LP and this value is the weight of a minimal dipath from s to v . The minimal value of the dual LP is achieved by the characteristic vector of dual LP is equal to the maximal value of the primal LP and this value is the weight of a minimal
dipath from s to v. The minimal value of the dual LP is achieved by the characteristic vector of
a minimal dipath. There may dipath from s to v.
a minimal dipath.
vectors of dipaths.
We note though

unimal dipath. There may be other optimal solutions of the dual that are not characteristic
tors of dipaths.
We note though that an arbitrary vector \vec{h} with components 0 or 1 which is dual feasible is a
rectoristic v We note though that an arbitrary vector \vec{h} with components 0 or 1 which is dual feasible is a
characteristic vector of an $s - v$ dipath. Indeed the matrix product $M\vec{h} = \vec{c}$ can be considered a
set of equations – characteristic vector of an $s - v$ dipath. Indeed the matrix product $M\vec{h} = \vec{c}$ can be considered a set of equations – one for each vertex u. The equation for this vertex (using the definition of M) adds the components set of equations – one for each vertex u. The equation for this vertex (using the definition of M). set of equations – one for each vertex u. The equation for this vertex (using the definition of M) adds the components of \vec{h} on arcs with u as head and subtracts the components with u as tail. The definition of the feasible for the vector \vec{c} (value +1 at v , -1 at s and 0 elsewhere) ensures that if \vec{h} is a $0-1$ vector feasible for the dual LP, then \vec{h} is a characteristic vector of a dipath from s to v .
This di

feasible for the dual LP, then \vec{h} is a characteristic vector of a dipath from s to v.
This discussion shows how the minimum path problem and the maximum potential problem can
be formulated as linear programs that are

Maxflow and Mincut problems

A network consists of a digraph G , a source node s and a sink node t in G , and a capacity **Maxilow and Mincut problems**
A network consists of a digraph G, a source node s and a sink node t in
function $c = \{c_e : e \in E\}$. A vector $f = \{f_e : e \in E\}$ is called a flow in G if

vector
$$
f = \{f_e : e \in E\}
$$
 is called a flow in G if
\n
$$
\sum_{h(e)=v} f_e - \sum_{t(e)=v} f_e = 0, \quad v \in V - \{s, t\}
$$
\n(4)

where $t(e)$ and $h(e)$ denote the tail and head of the arc e, respectively. Condition (4) is called the
flow conservation law. Note that the flow conservation law can be expressed as where $t(e)$ and $h(e)$ denote the tail and head of the arc e , respectively. Condition flow conservation law can be expressed as *flow conservation law.* Note that the flow conservation law can be expressed as

$$
\hat{M}f = 0
$$

 $Mf = 0$
where \hat{M} is the matrix obtained from the incidence matrix M by deleting rows corresponding to s
and t. The maximum flow problem can be formulated as the following linear program where \hat{M} is the matrix obtained from the incidence matrix M by deleting rows correspos
and t . The maximum flow problem can be formulated as the following linear program. and t . The maximum flow problem can be formulated as the following linear program.

Maximize
$$
\sum_{h(e)=t} f_e - \sum_{t(e)=t} f_e
$$
 subject to $\hat{M}f = 0$, $0 \le f \le c$

The augmenting path algorithm is a primal algorithm, since at each step it maintains a feasible flow and improves towards getting a dual feasible solution (a saturated cut).

The preflow-push algorithm can be viewed as a dual algorithm, since at each step it mains a dual feasible solution (saturated cut), and improves towards getting a primal feasible solution (feasible flow). The LP formulation of transportation and assignment problems is straightforward. One usually
The LP formulation of transportation and assignment problems is straightforward. One usually
see primal (simplex) algorithm to so

flow).
The LP formulation of transportation and assignment problems is straightforward. One usually
uses a primal (simplex) algorithm to solve the transportation problem, and uses a dual algorithm
to solve the assignment p uses a primal (simplex) algorithm to solve the transportation problem, and uses a dual algorithm to solve the assignment problem (such as Kuhn's Hungarian method).