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Chapter 1

Minimum Weight Paths and Spanning Trees

1.1 Basic Ideas

Suppose that G is a directed graph with one node s singled out as the source. We assume also that each

(directed) arc uv of G has a weight c(uv) assigned to it. This “weight” function can represent any number

of different parameters of interest: cost of using this arc, transmission speed of this link or even the physical

distance between nodes. Since the weight of an arc may represent the changes we plan to make in another

parameter, we allow both negative and positive weights. Figure 1.2 illustrates such a directed graph.

Figure 1.2 A directed graph with edge weights

If there is a sequence of edges leading from the source s to another node v then v is reachable from s.

In Figure 1.2 all nodes are reachable from s, but if the direction of arc ab were reversed then node a would

no longer be reachable. The weight of a path P from s to v is simply the sum c(P ) of the weights of the

edges used in the path. So in Figure 1.2, the path s, b, a, d has weight 1 + 2 + 3 = 6.

With this backgound, we can state the basic problem of this section. Given a directed graph G with

source s and weight function c determine, for each reachable node v, the minimum weight of an s − v path

and a path that realizes this weight. This is the single source problem. It is often formulated with the weights

being lengths, as the Shortest Path Problem

We should declare immediately that it is not always possible to find minimum weight paths. Figure 1.2

illustrates the difficulty. This graph contains a cycle b, d, c, b with weight 4 + 1 − 6 = −1. Since this cycle

has negative weight, by going around this cycle repeatedly, we can construct paths from s to b with lower

and lower cost; there is no minimum weight for an s− b path in this graph. In fact, negative cost cycles are

the only obstruction.

Theorem 1.1 Suppose that G is a directed graph with source node s and weight function c defined on the

arcs of G. If in addition G contains no negative weight cycles, then there is a minimum weight path from s
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to each reachable node.

Exercise

1.1 Prove Theorem 1.1. [Hint: Show that under the hypotheses, a simple s − v path can not have more

weight than an s − v path containing a cycle.]

The idea of the algorithms developed in this section is to maintain a set of node labels y(v) with the

property that if y(v) is finite then it represents the weight of some s− v path. Initially we set y(s) = 0 and

y(v) = ∞ for all other nodes v. (For purposes of arithmetic here, ∞+a = ∞ for any a.) Suppose we examine

an arc uv where y(u) is finite. SInce y(u) is the weight of some s − u path the sum y(u) + c(uv) represents

the cost of a path from s to v. If y(u) + c(uv) < y(v) then this new path has lower weight than whatever

path was used to determine y(v). Since we are looking for low weight paths, we redefine y(v) = y(u)+c(uv).

To be able to reconstruct the path, when an update y(v) = y(u)+c(uv) is made, we record the fact that

u is the node directly before v in this s − v path; so the predecessor p(v) = u. Knowing these predecessors

is enough to reconstruct the s− v path (if there is one). These operations are collected into a basic update

step performed on a single arc.

Update(uv): if y(u) + c(uv) < y(v) then set {y(v) = y(u) + c(uv), p(v) = u}.

The general approach of the algorithm is to perform update steps on the arcs of G until

every arc satisfies y(u) + c(uv) ≥ y(v). (1.1)

Once this situation is achieved, the finite values of y(v) give the minimum weights and the function p(v)

constructs the shortest paths. Observe though that Condition (1.1) can be satisfied with some infinite values

remaining for node labels y(w). This indicates that the node w has not yet been reached by the algorithm

and, at termination, it means that w is not reachable in G.

Theorem 1.2 If Condition (1.1) is satisfied in G then there are no negative weight cycles in G.

Proof. Suppose that v0, v1, v2, . . . , vk = v0 is a directed cycle in G and that G satisfies Condition (1.1).

Then
c(v0v1) ≥ y(v1)− y(v0)

c(v1v2) ≥ y(v2)− y(v1)

c(v2v3) ≥ y(v3)− y(v2)

...

c(vk−1v0) ≥ y(v0)− y(vk−1)

Summing these inequalities, the terms on the right collapse to 0 while those on the left determine the weight

of the cycle. We conclude that any cycle in G must have non-negative weight.

This result suggests that we should have our algorithm repeatedly update arcs until there are no arcs

left to work on. The missing ingredient is the order in which we will test the arcs. Different algorithms
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can be constructed by specifying different orders for checking the arcs. One approach is to visit a node and

update all of the arcs leading away from that node before moving to a new node. This process is formallized

in the procedure Scan(–).

Scan(v): for all arcs vw, Update (uw).

1.2 Non-negative Weights

One of the algorithms that many students encounter early in their studies is the Shortest Path algorithm

of Dijkstra. This is the important special case where the weights are thought of as lengths and all lengths

are non-negative. So in the world of Dijkstra’s algorithm there can’t be any negative weight cycles. The

algorithm can easily be expressed using the procedures just defined: Among all vertices that have not yet

been Scanned, choose a node v with minimum finite label y(v) and perform Scan(v). The algorithm ends

when all vertices have been scanned.

Dijkstra’s Algorithm

1.Initialize: for each v ∈ V \ {s}: Set y(v) = ∞ and p(v) = undefined. Set y(s) = 0 and U = V .

2. While U contains a node w with finite y(w),

Choose v ∈ U with minimum y(v);

Scan(v);

Remove v from U .

When Dijkstra’s Algorithm stops, the finite values y(v) give the weight of a minimum weight s−v path,

the predecessor function p(−) specifies the shortest paths and the nodes remaining in U are unreachable.

We will postpone the analysis of the predecessor function till later. Our task here is to see why Dijkstra’s

Algorithm works. Since the values of the node labels are adjusted as the algorithm procedes, it is useful to

define y′(v) to be the value of y(v) when node v is scanned.

Suppose that Dijkstra’s Algorithm stops with Condition (1.1) unsatisfied. Then there is an arc uv such

that

y(u) + c(uv) < y(v).

So y(u) is finite and when u was scanned, y′(u)+c(uv) ≥ y(v). It must be that the value of y(u) was reduced

when a subsequent node w was scanned. When this happened the label of u was set to y′(w)+c(wu) < y′(u).

Since the weights on the arcs are non-negative, y′(w) ≤ y′(w) + c(wu). Combining the inequalities we have

y′(w) < y′(u) and node w scanned after u. This is impossible as we show in Theorem 1.3. This contradiction

shows that, at termination, Condition (1.1) is indeed satisfied.

Theorem 1.3 Suppose that Dijkstra’s Algorithm scans node u before node w. Then y′(u) ≤ y′(w)

Proof. Suppose that y′(w) < y′(u) and that w is the earliest scanned node for which this happens. Thus

y′(z) ≥ y′(u) for any node z scanned before w. When u was scanned y′(u) ≤ y(w) since we always choose an
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unscanned node with minimum label. Since y′(w) < y′(u), the label on w was reduced to y′(w) when some

other node z was scanned and this node z was scanned before w was scanned. Therefore y′(z) ≥ y′(u) and

y′(w) = y′(z) + c(zw). Since c(zw) ≥ 0 we have y′(z) ≤ y′(w) < y′(u); a contradiction.

1.3 The General Case

The simplest approach that will work in the general case – negative and positive weights allowed – is to

simply update all the arcs |V | times. This means that we update all the arcs once then run through them

all again and so on. It turns out that this is enough to calculate the shortest paths if they exist.

Bellman-Ford Shortest Paths Algorithm

1. Initialize: for each v ∈ V \ {s}: Set y(v) = ∞ and p(v) = undefined. Set y(s) = 0.

2. For i = 1 to |V |, for every arc uv, Update uv.

3. If every arc satisfies y(u) + c(uv) ≥ y(v) then

(i) if y(v) is finite it is the weight of a shortest path from s to v and p(−) constructs the path;

(ii) if y(v) = ∞ then v is unreachable from s.

4. If after n iterations some arc satisfies y(u) + c(uv) < y(v) then G contains a negative weight cycle.

If at anytime during execution of this algorithm an update makes y(s) < 0 then a negative weight cycle

has been detected and the algorithm can stop. Hence we assume in the analysis that y(s) = 0 at all times.

Note also that Step 4 simply declares that some negative weight cycle exists. Sometimes we actually want

the cycle. We defer to later the question of how to locate at least one negative weight cycle in this case.

Why does the Bellman-Ford Algorithm work? Let n = |V | and E1, E2, . . . , En−1 denote n− 1 complete

copies of the arcs of G. The algorithm updates the arcs of E1 then E2 and so on. If we now take any

simple path P in G, it will have at most n − 1 arcs and we can find its first arc in E1, second arc in E2

and generally the i-th arc in Ei. This means that we are updating the arcs of P in order, with many other

updates interspersed. This fact guarantees that when we finish y(v) really is the weight of a shortest path.

To see this, consider a simple 2-arc path , say a → b → c. Suppose the arc ab is updated, making

c(ab) = y(b)− y(a), and that sometime later the next arc of the path bc is updated. By this time, the values

of the labels y have been changed so we write c(bc) = y′(c)− y′(b). What we know is that the y values at a

node never increase so y′(b) ≤ y(b). Thus the weight of this path satisfies:

c(ab) + c(bc) = y(b)− y(a) + y′(c)− y′(b) = y′(c) + (y(b) − y′(b))− y(a) ≥ y′(c) − y(a).

The same argument will apply along any simple path as long as, amongst all the arc updates that are

happening in the algorithm, we can select a sequence of updates that process the arcs of the path in order.

Using the fact that y(s) = 0 we have the following result.
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Theorem 1.3 Suppose that P is a simple s − v path and that the arcs of this path are updated in order

(though not necessarily consecutively). Then the weight c(P ) of the path satisfies c(P ) ≥ y(v).

What this means is that, if the graph G does not contain any negative weight cycles, then when the

Bellman-Ford algorithm stops, y(v) is the weight of a shortest s− v path as required.

1.4 Predecessor Subgraph and Negative Weight Cycles

Consider now the predecessor function p(−). From the algorithm, whenever y(b) is finite p(b) is defined. In

this case, p(b) = a where there is an arc from a to b and p(a) is also defined. The exception is the source

s where y(s) = 0 but there is no predecessor. The predecessor arcs p(b)b form a subgraph on the reachable

nodes with the property that each such node, except the source s, is the head of exactly one of these arcs.

Such a subgraph is very restricted in structure. It must be a union of a directed tree rooted at s and a finite

number of simple directed cycles which may have additional directed trees rooted at their nodes (Exercise

1.2.2). Figure 1.2.1 shows an example of such a subgraph.

Exercise

1.2 Suppose that H is a directed graph with a source node s such that each node of H other than s is

the head of exactly one arc of H. Prove that H is the union of a directed tree rooted at s and a finite

number of simple directed cycles which may have additional directed trees attached at their nodes.

Figure 1.2.1 A possible predecessor subgraph.

Suppose that p(b) = a. Then when p(b) was set equal to a also y(b) = y(a) + c(a, b) was true. Have the

values of y(b) and y(a) changed since then? If an update on another arc changes y(b) then p(b) would no

longer equal a. So y(b) has not changed. If y(a) has changed then it is certainly no larger so we conclude

that y(b) ≥ y(a) + c(a, b) is true whenever p(b) = a. That is,

if p(b) = a then y(b)− y(a) ≥ c(a, b).

Now suppose that the predecessor graph contains a cycle v0, v1, v2, . . . , vk = v0 with p(vi) = vi−1 for

i = 1, . . . , k. Suppose that the arc v0v1 was the last arc of the cycle to be updated. Freeze the values
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of y(v) one step before this arc v0v1 was updated so that the inequality y(v1) − y(v0) > c(v0, v1) is strict.

Then at this step

y(v1) − y(v0) > c(v0, v1)

y(v2) − y(v1) ≥ c(v1, v2)

...

y(vk)− y(vk−1) ≥ c(vk−1, vk)

Since v0 = vk the left side sums to zero while the right side sums to the weight of the cycle. We conclude

that any cycles in the predecessor subgraph represent negative weight cycles in the graph.

Theorem 1.4 If G has no negative weight cycles then the predecessor subgraph is a tree rooted at the

source s and the paths in this tree are shortest paths. If G has a negative weight cycle then at the end of the

Bellman–Ford algorithm, the predecessor subgraph will contain a cycle of negative weight.
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1.5 Examples

Figure 1.3 Example: non-negative weights

Line # Scan Update y(a), p(a) y(b), p(b) y(c), p(c) y(d), p(d)
node arc

1 s sa 3, s ∞,− ∞,− ∞,−
2 sb 3, s 2, s ∞,− ∞,−
3 sc 3, s 2, s 8, s ∞,−
4 b bd 3, s 2, s 8, s 4, b
5 a ab 3, s 2, s 8, s 4, b
6 ad 3, s 2, s 8, s 4, b
7 d dc 3, s 2, s 6, d 4, b
8 c cb 3, s 2, s 6, d 4, b

Figure 1.4 The Predecessor Subgraph of the example

Figure 1.5 Example: positive and negative weights
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Line # Pass # Update y(a), p(a) y(b), p(b) y(c), p(c) y(d), p(d)

1 I sa 3, s ∞,− ∞,− ∞,−
2 sb 3, s 2, s ∞,− ∞,−
3 sc 3, s 2, s 8, s ∞,−
4 ab 3, s 2, s 8, s ∞,−
5 ad 3, s 2, s 8, s 7, a
6 bd 3, s 2, s 8, s 4, b
7 cb 3, s 2, s 8, d 4, b
8 dc 3, s 2, s 6, d 4, b

9 II sa 3, s 2, s 6, d 4, b
10 sb 3, s 2, s 6, d 4, b
11 sc 3, s 2, s 6, d 4, b
12 ab 3, s 2, s 6, d 4, b
13 ad 3, s 2, s 6, d 4, b
14 bd 3, s 2, s 6, d 4, b
15 cb 3, s 2, s 6, d 4, b
16 dc 3, s 2, s 6, d 4, b

Figure 1.6 Example: negative weight cycle

Line # Pass # Update y(a), p(a) y(b), p(b) y(c), p(c) y(d), p(d)

1 I sa 3, s ∞,− ∞,− ∞,−
2 sb 3, s 3, s ∞,− ∞,−
3 sc 3, s 3, s 8, s ∞,−
4 ab 3, s 3, s 8, s ∞,−
5 ad 3, s 3, s 8, s 7, a
6 bd 3, s 3, s 8, s 5, b
7 cb 3, s 2, c 8, d 5, b
8 dc 3, s 2, c 7, d 5, b

9 II sa 3, s 2, c 7, d 5, b
10 sb 3, s 2, c 7, d 5, b
11 sc 3, s 2, c 7, d 5, b
12 ab 3, s 2, c 7, d 5, b
13 ad 3, s 2, c 7, d 5, b
14 bd 3, s 2, c 7, d 4, b
15 cb 3, s 1, c 7, d 4, b
16 dc 3, s 1, c 6, d 4, b
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On the next pass Condition (1.1) is still not satisfied: we would set y(b) = 0, p(b) = c. After the fourth

pass through the arcs, Condition (1.1) would still not be satisfied. We conclude that this network contains

a negative weight cycle on the accessible nodes. The predecessor graph is as follows. This is already clear at

the end of the first pass.

Figure 1.4 The Predecessor Subgraph of the example

1.6 Minimum Spanning Trees

Start with an undirected, connected graph G. A spanning tree of G is a connected subgraph of G that

simmultaneously contains all the nodes of G and contains no cycles (i.e. is acyclic). Figure 1.5 shows a

graph on 10 nodes with a spanning tree indicated by dashed arcs.

Figure 1.5 A graph with spanning tree marked by dashes.

Think about the complete graph for a moment and it will be clear that a graph can contain many

different spanning trees. Once weights are added to the arcs it is natural to ask for the spanning tree of

minimum weight for G. This is the Minimum Spanning Tree Problem; a standard elementary problem in

combinatorial optimization.

There are several distinct algorithms available for solving this problem. We will develop two here that

illustrate the basic duality of optimization theory. We begin with an informal outline of each algorithm.

Algorithm A:

Work with the complete node set.

Start with no arcs selected.

Work through the arcs in order of increasing weight.
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Add each arc to the subgraph S if and only if it does not form a cycle with the arcs already in S.

Stop when no more arcs can be added (i.e. when all nodes are covered by the arcs in S).

Algorithm B:

Work with the complete node set.

Start with all the arcs selected.

Work through the arcs in order of decreasing weight.

Toss out an arc from the subgraph S if and only if S stays connected when the arc is removed.

Stop when no more arcs can be removed (i.e. when there are no more cycles in S).

In each case the algorithm maintains a set of arcs in a subgraph and works to modify this subgraph into

a spanning tree. The method used guarantees that this spanning tree has minimum weight. In Algorithm A,

we work with a subgraph S that is always acyclic and build it up using least weight arcs until it is connected

and spans G. In Algorithm B we proceed in the dual direction. The subgraph always spans G and we toss

out heavy weight arcs until the graph is acyclic.

Figure 1.6 is a connected, undirected graph with arc weights. We will illustrate the two algorithms on

this example.

Figure 1.6 A graph with arc weights.

For Algorithm A we add the arcs in increasing order of weight. For the example the order is as folllows

with the resulting minimum spanning tree shown in Figur 1.7.

arc ce ad gi gj ab eg gh fg de

weight 1 1 1 1 2 2 2 2 3
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Figure 1.7 The minimum spanning tree found by Algorithm A.

For Algorithm B we toss out the arcs in decreasing order of weight. For the example the order is as

folllows with the resulting minimum spanning tree shown in Figur 1.8.

arc df fi de eh hj dg ab gj

weight 5 4 3 3 3 3 2 1

Figure 1.8 The minimum spanning tree found by Algorithm B.

Since the graph has the same weight on different arcs there is a choice in the actual arc order used by

each algorithm. This means that the actual spanning tree produced might depend on the implementation

and details of the algorithm used.

Next we will prove that Algorithms A and B actually work. Stopping is not really an issue since each

works systematically through a finite set and hence can’t run forever. But at the end, do we have a minimum

spanning tree (MST)? To establish this, we will use a simple idea to move from one spanning tree to another.

Suppose that T is a spanning tree in a graph G. Take any arc e = uv of G which is not in T . Since T
spans G , there is a unique path P in the tree T between u and v. This means that the subgraph T ∪ {e}
formed by adding the arc e to T contains a unique cycle formed by e and the path P . If we now choose an

arc f of P and remove it from T ∪ {e}, the cycle will be broken and we are left with another spanning tree.

Since we will use this transformation repeatedly, lets denote by SWAP(T ,e,f) the spanning tree obtained by

removing f from and adding e to the spanning tree T . So T becomes “T + e − f”. Also we will denote by

w(e) the weight on the arc e.

Theorem 1.5 Algorithm A produces a MST

Proof. Suppose that Algorithm A selects the arcs in order e1, e2, . . . , en−1 to produce a spanning tree T .

We show that the set of arcs choosen at each step is contained in some MST. In the end this can only be T .

First we show that the arc e1 is contained in some MST. If not then let T ∗ be a MST and look at the

subgraph T ∪ {e}. This subgraph contains a unique cycle C; let f be any arc of T ∗ in this cycle. Then

SWAP(T ,e,f) is a spanning tree with weight equal to w(T )−w(f) + w(e). Since e1 has minimal weight by

the specification of the algorithm, SWAP(T ,e,f) is a MST containing e1.

January 12, 2001 1.6: Minimum Spanning Trees 11



Choose k such that the set {e1, . . . , ek} is contained in a MST, say T ∗, but {e1, . . . , ek, ek+1} is not

contained in any MST. Then T ∗ ∪ {ek+1} contains a unique cycle and this cycle contains an arc f not in T ,

the spanning tree produced by Algorithm A.

When ek+1 was chosen by Algorithm A, the arc f was a legal option. To see this, note that all of

e1, . . . , ek, f are contained in the tree T ∗ so form an acyclic subgraph. Since f was not selected it must

be that w(f) ≥ w(ek+1), else it would have been chosen. Then SWAP(T ∗,ek+1,f) is a MST containing

{e1, . . . , ek, ek+1} contrary to the choice of k.

Therefore the full set of arcs, T , chosen by Algorithm A is a spanning tree contained in a MST, so T is

a MST.

The proof of the correctness of Algorithm B is similar but dual to the proof just given.

Theorem 1.6 Algorithm B produces a MST

Proof. Suppose that Algorithm B removes the arcs in order e1, e2, . . . , em to produce a spanning tree T .

We show that T is a MST by showing that the arcs remaining at each step contain some MST. At the end

this can only be T .

First we show that there is a MST that does not contain e1. Let T ∗ be a MST containing e1. Since

Algorithm B removes e1 it must be that removing e1 does not disconnect the graph so e1 is contained in a

cycle C of G. Let f be any other arc of C. Since f is part of a cycle in G it was a candidate for removal.

Since it was not removed, it follows that w(f) ≤ w(e1). Then SWAP(T ∗,f ,e1) has a weight no larger than

T ∗, so is a MST not containing e1 as required.

Choose k such that when Algorithm B removes the set {e1, . . . , ek}, the remaining arcs contain a MST,

but when ek+1 is removed there is no longer a MST in the remaining arcs. Thus there is a MST, say T ∗ not

using any of the arcs in {e1, . . . , ek} but including the arc ek+1. Since removing ek+1 does not disconnect

the graph, it must be contained in a cycle C not using any of e1, . . . , ek. Let f be any arc of C not contained

in the tree T ∗. Because of the cycle C we know that removing f would not disconnect the graph. Since it

was not removed, it follows that w(f) ≤ w(ek+1). Thus SWAP(T ∗,f ,ek+1) has weight less than or equal to

w(T ∗). Thus SWAP(T ∗,f ,ek+1) is a MST remaining after {e1, . . . , ek+1} is removed.

Therefore the arcs T remaining at the end are precisely a spanning tree containing a MST, so T is a

MST.

Algorithms A and B show that we can indeed find minimum spanning trees. It is clear from the proofs

why they work and they also illustrate duality. As algorithms though they are not efficient. For example, in

a straightforward approach to Algorithm A, we would sort the arcs (|E| log |E|) into increasing weight and

then process the arcs one at a time to decide if S ∪ {e} contains a cycle. The overall complexity is too high.

The proofs and the exampe make it clear that there is a lot of room to tighten the algorithm. For example,

if there are n nodes in G then the MST will only contain n− 1 arcs. This is much less than the potential
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number of arcs in G so perhaps we can find a refinement of Algorithm A that avoids looking at substantial

numbers of arcs.

In Algorithm C, we will again work with arcs of increasing weight but not the whole arc set. The idea

is to build a tree rather than simply an acyclic set of arcs. We start with any node v (which forms a subtree

with no arcs). With a partially constructed tree S, we find a node u not yet in the tree but joined to the tree

by an arc of minimum weight amongst all arcs with one end in the tree. The key is that we work through the

nodes not the arcs. To make this work we need a pointer closest(u) which is a node of the growing tree S
such that the arc between u and closest(u) has minimum weight among the arcs joining u to S . The weight

of this arc is denoted d(u).

Algorithm C:

Start with S = {v}.
For each u 6= v let closest(u) = v and set d(u) = w(uv) if there is such an arc and ∞ if there is not.

While nodes u remain outside S:

Find u with minimum d(u).

Add u and the arc between u and closest(u) to S.

Update the values of closest(w) and d(w) for nodes remaining outside S.

Exercises

1.6.1 Prove that Algorithm C is correct.

1.6.2 Show that the complexity of Algorithm C is O(n2) where n is the number of nodes in G.
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1.1 Minimum Spanning Trees

Start with an undirected, connected graph G. A spanning tree of G is a connected subgraph of G that

simultaneously contains all the nodes of G and contains no cycles (i.e. is acyclic). Figure 1.5 shows a graph

on 10 nodes with a spanning tree indicated by dashed edges.

Figure 1.5 A graph with spanning tree marked by dashes.

Think about the complete graph for a moment and it will be clear that a graph can contain many

different spanning trees. Once weights are added to the edges it is natural to ask for the spanning tree of

minimum weight for G. This is the Minimum Spanning Tree Problem; a standard elementary problem in

combinatorial optimization.

There are several distinct algorithms available for solving this problem. We will develop two here that

illustrate the basic duality of optimization theory. We begin with an informal outline of each algorithm.

Algorithm A:

Work with the complete node set.

Start with no edges selected.

Work through the edges in order of increasing weight.

Add each edge to the subgraph S if and only if it does not form a cycle with the edges already in S.

Stop when no more edges can be added (i.e. when all nodes are covered by the edges in S).

Algorithm B:

Work with the complete node set.

Start with all the edges selected.

Work through the edges in order of decreasing weight.

Toss out an edge from the subgraph S if and only if S stays connected when the edge is removed.

Stop when no more edges can be removed (i.e. when there are no more cycles in S).

In each case the algorithm maintains a set of edges in a subgraph and works to modify this subgraph into

a spanning tree. The method used guarantees that this spanning tree has minimum weight. In Algorithm

A, we work with a subgraph S that is always acyclic and build it up using least weight edges until it is
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connected and spans G. In Algorithm B we proceed in the dual direction. The subgraph always spans G and

we toss out heavy weight edges until the graph is acyclic.

Figure 1.6 is a connected, undirected graph with edge weights. We will illustrate the two algorithms on

this example.

Figure 1.6 A graph with edge weights.

For Algorithm A we add the edges in increasing order of weight. For the example the order is as folllows

with the resulting minimum spanning tree shown in Figur 1.7.

edge ce ad gi gj ab eg gh fg de

weight 1 1 1 1 2 2 2 2 3

Figure 1.7 The minimum spanning tree found by Algorithm A.

For Algorithm B we toss out the edges in decreasing order of weight. For the example the order is as

folllows with the resulting minimum spanning tree shown in Figur 1.8.

2 1.1: Minimum Spanning Trees January 3, 2001



edge df fi de eh hj dg ab gj

weight 5 4 3 3 3 3 2 1

Figure 1.8 The minimum spanning tree found by Algorithm B.

Since the graph has the same weight on different edges there is a choice in the actual edge order used by

each algorithm. This means that the actual spanning tree produced might depend on the implementation

and details of the algorithm used.

Next we will prove that Algorithms A and B actually work. Stopping is not really an issue since each

works systematically through a finite set and hence can’t run forever. But at the end, do we have a minimum

spanning tree (MST)? To establish this, we will use a simple idea to move from one spanning tree to another.

Suppose that T is a spanning tree in a graph G. Take any edge e = uv of G which is not in T . Since T
spans G , there is a unique path P in the tree T between u and v. This means that the subgraph T ∪ {e}
formed by adding the edge e to T contains a unique cycle formed by e and the path P . If we now choose an

edge f of P and remove it from T ∪{e}, the cycle will be broken and we are left with another spanning tree.

Since we will use this transformation repeatedly, lets denote by SWAP(T ,e,f) the spanning tree obtained by

removing f from and adding e to the spanning tree T . Also we will denote by w(e) the weight on the edge

e.

Theorem 1.5 Algorithm A produces a MST

Proof. Suppose that Algorithm A selects the edges in order e1, e2, . . . , en−1 to produce a spanning tree T .

We show that the set of edges choosen at each step is contained in some MST. In the end this can only be

T .

First we show that the edge e1 is contained in some MST. If not then let T ∗ be a MST and look at the

subgraph T ∪ {e}. This subgraph contains a unique cycle C; let f be any edge of T ∗ in this cycle. Then

SWAP(T ,e,f) is a spanning tree with weight equal to w(T )−w(f) + w(e). Since e1 has minimal weight by
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the specification of the algorithm, SWAP(T ,e,f) is a MST containing e1.

Choose k such that the set {e1, . . . , ek} is contained in a MST, say T ∗, but {e1, . . . , ek, ek+1} is not

contained in any MST. Then T ∗ ∪ {ek+1} contains a unique cycle and this cycle contains an edge f not in

T , the spanning tree produced by Algorithm A.

When ek+1 was chosen by Algorithm A, the edge f was a legal option. To see this, note that all of

e1, . . . , ek, f are contained in the tree T ∗ so form an acyclic subgraph. Since f was not selected it must

be that w(f) ≥ w(ek+1), else it would have been chosen. Then SWAP(T ∗,ek+1,f) is a MST containing

{e1, . . . , ek, ek+1} contrary to the choice of k.

Therefore the full set of edges, T , chosen by Algorithm A is a spanning tree contained in a MST, so T
is a MST.

The proof of the correctness of Algorithm B is similar but dual to the proof just given.

Theorem 1.6 Algorithm B produces a MST

Proof. Suppose that Algorithm B removes the edges in order e1, e2, . . . , en−1 to produce a spanning tree

T . We show that T is a MST by showing that the edges remaining at each step contain some MST. At the

end this can only be T .

First we show that there is a MST that does not contain e1. Let T ∗ be a MST containing e1. Since

Algorithm B removes e1 it must be that removing e1 does not disconnect the graph so e1 is contained in a

cycle C of G. Let f be any other edge of C. Since f is part of a cycle in G it was a candidate for removal.

Since it was not removed, it follows that w(f) ≤ w(e1). Then SWAP(T ∗,f ,e1) has a weight no larger than

T ∗, so is a MST not containing e1 as required.

Choose k such that when Algorithm B removes the set {e1, . . . , ek}, the remaining edges contain a MST,

but when ek+1 is removed there is no longer a MST in the remaining edges. Thus there is a MST, say T ∗ not

using any of the edges in {e1, . . . , ek} but including the edge ek+1. Since removing ek+1 does not disconnect

the graph, it must be contained in a cycle C not using any of e1, . . . , ek. Let f be any edge of C not contained

in the tree T ∗. Because of the cycle C we know that removing f would not disconnect the graph. Since it

was not removed, it follows that w(f) ≤ w(ek+1). Thus SWAP(T ∗,f ,ek+1) has weight less than or equal to

w(T ∗). Thus SWAP(T ∗,f ,ek+1) is a MST remaining after {e1, . . . , ek+1} is removed.

Therefore the edges T remaining at the end are precisely a spanning tree containing a MST, so T is a

MST.

The algorithms A and B show that we can indeed find minimum spanning trees. It is clear from the

proofs why they work and they also illustrate optimization duality. As algorithms though they are not

efficient. For example, in a straightforward approach to Algorithm A, we would sort the edges (|E| log |E|)
into increasing weight and then process the edges one at a time to decide if S ∪ {e} contains a cycle. The

overall complexity is too high. The proofs and the exampe make it clear that there is a lot of room to tighten
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the algorithm. For example, if there are n nodes in G then the MST will only contain n− 1 edges. This is

much less than the potential number of edges in G. Perhaps we can find a refinement of Algorithm A that

avoids looking at substantial numbers of edges.

In Algorithm C (due to Prim), we will again work with edges of increasing weight but not with the

whole edge set. The idea is to build a tree rather than simply an acyclic set of edges. We start with any

node v (which forms a subtree with no edges). With a partially constructed tree S, we find a node u not yet

in the tree but joined to the tree by an edge of minimum weight amongst all edges with one end in the tree.

The key is that we work through the nodes not the edges. To make this work we need a pointer closest(u)

which is a node of the growing tree S such that the edge between u and closest(u) has minimum weight

among the edges joining u to S. The weight of this edge is denoted d(u).

Algorithm C:

Start with S = {v}.
For each u 6= v let closest(u) = v and set d(u) = w(uv) if there is such an edge and ∞ if there is not.

While nodes u remain outside S:

Find u with minimum d(u).

Add u and the edge between u and closest(u) to S.

Update the values of closest(w) and d(w) for nodes remaining outside S.

Exercises

1.6.1 Prove that Algorithm C is correct.

1.6.2 Show that the complexity of Algorithm C is O(n2) where n is the number of nodes in G.
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Chapter 2

Maximum Flow in a Network

2.1 Flows in Networks

The model we use for a network consists of a set of nodes joined by directed edges as in Figure 2.1. Each

edge e of the network carries some amount of flow denoted fe. The flow commodity could be transfer rate

through a communications network, or merchandise moving from producer to consumer or simply water

flowing in a pipe. Network models can be used in a vast array of applications.

Figure 2.1 An Example of a Network

In the network there are two nodes with special roles: the source s and the sink t. The network itself

is a model of ways to arrange flow moving from node s to node t. (This does not stop us from having edges

directed into the source or out of the sink, though they may not be very helpful.)

Figure 2.2 A Flow in a Network

There is one key condition that we place on any flow F = {fe} in a network. It is natural to assume

that, except for the source and the sink, the nodes themselves neither create nor consume flow; they just

pass it on. Thus we require “flow conservation” which means that, at each node v 6= s, t the total flow into

v equals the total flow out of v. Any flow F that satisfies this condition is called a feasible flow .
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When discussing networks we will use the following notation. The network itself will be N = (V,E)

with node set V and edge set E. A flow in N will be denoted F = {fe} with fe being the flow in edge e.

Each edge e has a tail t(e) and a head h(e). The flow conservation requirement can now be written

∑

t(e)=v

fe =
∑

h(e)=v

fe

for all nodes v ∈ V with v 6= s, t. In any feasible flow the net flow out of the source is equal to the net flow

into the sink (Exercise 2.2). The value of the flow is defined to be this common value

val(F ) =
∑

t(e)=s

fe −
∑

h(e)=s

fe.

Note that in the examples of this and the next section, there are no edges leading into the source or out of

the sink so the second sum in the formula for val(F ) is empty in these cases.

In any real network there will be an upper bound on the flow in an edge. With this in mind, we specify

for each edge e a maximum capacity ce. In addition, we will assume for the moment that the flows are not

negative. There are situations where a negative flow makes sense so we will eventually have to deal with this

possibility, but for now fe ≥ 0. Therefore, for each edge e

0 ≤ fe ≤ ce.

When drawing pictures of networks with flows and capacities, the label on edge e will have the form

(fe, ce) with the flow preceding the capacity. The edge a→ b in Figure 2.3 has a flow of 6 with a capacity of

10. The value of the flow is 22. (Note that other authors use different conventions). Finally, we will assume

that the edge capacities are rational numbers. This is not a serious constraint since in almost all practical

problems any irrational number that arises can be replaced with a rational number. This assumption will

simplify some of the analysis.

Figure 2.3 A Flow in a Network with edge Capacities
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Exercise

2.1 In the network in Figure 2.4, the edge labels are part of a flow F with the flow in some of the edges

left blank. Specify the flows for these edges so that the flow is feasible and then determine the flow

value val(F ).

2.2 Show that in any (feasible) flow in a network,
∑

t(e)=s fe −
∑

h(e)=s fe =
∑

h(e)=t fe −
∑

t(e)=t fe.

Figure 2.4 Network for Exercise 2.1

We are now in a position to formulate the central problem of this chapter. Given a network with edge

capacities, the Maximum Flow Problem asks for an algorithm to determine a feasible flow of maximum

value subject to the edge capacity constraints.

2.2 Augmenting Paths

The flow in Figure 2.3 has value 22. Is there a feasible flow in this network with a larger value? In Figure

2.5, a particular directed path from s to t has been highlighted: s → a → b → e → g → t. Along this path

each of the edges has flow strictly less than capacity, fe < ce. Clearly there is room for more flow from s to

t along this path. moreover, if we increse the flow in each edge by the same increment δ then we will still

have a feasible flow since, at each internal node (i.e. not the source or sink), δ additional units flow in and

δ additional units flow out.

Figure 2.5 An Augmenting Path in a Network
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There is a limit to the size of increment we can make. Along an edge e of the path, the flow before was

fe and after is fe + δ. We must still have fe + δ ≤ ce so we need δ ≤ ce− fe. Thus the largest increment we

can make is

δ = min{ce − fe|e is an edge of the path}

In Figure 2.5, the values of ce− fe along the distinguished path are 6,4,8,6,13. Thus we can increase all

flows along this path by the minumum which is 4 units. Notice that once we have augmented the flow along

this path by 4 units the flow in edge a→ b is at capacity; such an edge is called saturated . Flow cannot be

increased in a saturated edge.

So far we have seen that, if there is a directed path from s to t with fe < ce on every edge of the path

(so no saturated edges), then the flow is not a maximum flow – it can be increased.

Consider now the simple network in Figure 2.6. The flow shown has value 1. Only two edges are not

satured: s → b and a → t. These edges do not form a directed path from s to t so the procedure just

developed won’t work. In fact,the given flow is not optimal as is clear from Figure 2.7 which exhibits a flow

of value 2 in the same network. In order to move from the flow of value 1 to the flow of value 2, it is necessary

to decrease the flow in edge a → b. In other words, the flow in Figure 2.7 has made an unwise choice in

sending flow from a to b. If this unit of flow is redirected from a to t, an additional unit of flow can move

across the bottom of the network. To make general use of this redirection idea, we will allow some or all of

the edges in our distinguished path to point backwards, that is, in the general direction of sink to source.

Figure 2.6 A Simple Network An Optimal Flow in the same Network

An augmenting path in a network is a path from source s to sink t consisting of some forward edges

directed source to sink and some reverse edges directed from sink to source along the path. Along the

augmenting path we insist that on each forward edge fe < ce and on each reverse edge fe > 0.

The highlighted path in Figure 2.8 is an augmenting path: it goes from source s to sink t and all forward

edges are non-saturated while the reverse edge f → d is non-empty. If δ is chosen so that δ ≤ ce − fe for

each forward edge and δ ≤ fe for each reverse edge then we can increase the flow value by δ. The procedure

is to add δ units of flow to the forward edges and subtract δ units of flow from the reverse edges. In the

example, the largest increment possible along this augmenting path is 3 units.
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Figure 2.8 An augmenting path with a reverse edge

Staying with the same example, perform both of the augmentations described above. the result is

displayed in Figure 2.9.

Figure 2.9 The network after both augmentations are performed

There don’t appear to be any further augmenting paths in this network. Does this tell us that the

flow is optimal? In any optimization situation, one should be on guard for local maxima. Our technique

of constructing augmenting paths cannot be used to increase this flow, but does that mean that even if we

made more drastic changes in the flow pattern, we would not find a flow of bigger value. This is the case;

the next section develops the tool needed to prove this is true.

May 28, 1999 2.2: Augmenting Paths 5



2.3 Cuts in a Network

In the search for augmenting paths in our current flow, we could start at the source s and try to push flow

as far as possible toward the sink. If flow has reached a node x then from here flow can be moved forward

along non-saturated edges e with t(e) = x and backwards along non-empty edges with h(e) = x. There are

several ways to organize such a process into an algorithm but for now just let S be the set of nodes such

that, with the current flow in place, flow can be pushed to that node. Thus x ∈ S if and only if there is a

(partial) augmenting path from s to x. Let T be the set of nodes not already placed in S. In Figure 2.10,

the set S = {s, a, d} is surrounded by a dotted ellipse.

Figure 2.10 The network after both augmentations are performed

The sets S and T have several important features. These are disjoint sets with their union equal to

the set of all nodes, so they partition the set of nodes. The source is in S and unless there is an complete

augmenting path from s to t, the sink t will be an element of T . Finally, from our construction of these sets

it is clear that the edges coming out of S leading into T must be saturated while the edges leading out of T

and into S must be empty. The first two properties are those we use to make our next definition.

A cut (S,T ) in a network N = (V,E) is a partition of the node set V = S ∪ T into disjoint sets S and

T such that the source s ∈ S and the sink t ∈ T . The capacity of the cut is defined as

cap(S,T ) =
∑

t(e)∈S,h(e)∈T
ce.

Thus the capacity of a cut is the sum of all the capacities of the edges leading out of S and into T . This is

quite a general definition. In particular, we are not assuming that the cut was determined by an attempt to

define an augmenting path. A cut separates the network into two parts and the capacity of the cut sets an

upper bound on moving flow from one part to the other. This is the content of the following theorem.

Theorem 2.1 Suppose that N is a network with feasible flow F = {fe} and cut (S,T ) then

(i) val(F ) =
∑

t(e)∈S,h(e)∈T fe −
∑

t(e)∈T,h(e)∈S fe,
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(ii) val(F ) ≤ cap(S, T ).

Proof. Using the flow conservation property, the difference

∑

t(e)=v

fe −
∑

h(e)=v

fe

equals the flow value if v = s the source and is zero for all other nodes in S. Thus we can write

val(F ) =
∑

v∈S


 ∑

t(e)=v

fe −
∑

h(e)=v

fe


 =

∑

t(e)∈S
fe −

∑

h(e)∈S
fe.

But an edge e with both ends in S contributes +fe through the first sum and −fe through the second sum;

these cancel. All that remains is the terms +fe for edges with tail in S and head in T and terms −fe for

edges with tail in T and head in S. Thus

val(F ) =
∑

t(e)∈S,h(e)∈T
fe −

∑

t(e)∈T,h(e)∈S
fe

as required for Part (i). To prove Part (ii), simply observe that the first sum is, by definition cap(S,T ) and

we are subtracting something nonegative.

This theorem says that the value of any flow in a newtork is at most the capacity of an arbitrary cut.

2.4 The Augmenting Path Algorithm for Max-Flow

We are now in a position to describe the augmenting path algorithm for the Max-Flow problem. We will first

describe the algorithm informally then discuss the correctness proof, efficiency and implementation issues.

As input we have a network N = (V,E) with edge capacities ce ≥ 0. Our aim is to produce a feasible

flow in N of maximum value.

Maximum Flow Algorithm

(1) Initialize the flow F with fe = 0 for all edges e ∈ E.

(2) Construct the set S of all nodes x such that there is a (partial) augmenting path from the source s

to x relative to the current flow F .

(3) If the sink t ∈ S then an augmenting path from s to t has been found. Perform the maximum

allowed augmentation along this path. Return to (2).

(4) If the sink t /∈ S then stop; the flow is maximal.

The first thing to establish is that if the algorithm ever stops then the flow is indeed maximal.

What we learn from Theorem 2.1 is that for any flow F and cut (S,T ) we have val(F ) ≤ cap(S, T ). In

particular the maximum value of a flow is at most the minimum value of any cut. Indeed, if we ever find

a flow and cut with equality, val(F ) = cap(S, T ) then this must be a maximum flow and a minimal cut.
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Suppose the algorithm stops. It must have reached Step (4) so the set S of nodes to which flow can

be moved from the source does not include the sink t. Setting T = V \ S, we have specified a cut (S, T ).

Since we cannot extend any of the augmenting paths out of S into T , every edge with its tail in S and

head in T is saturated and every edge with its head in S and tail in T is empty. Using Theorem 2.1

Part (i), we deduce that for this particular cut, val(F ) = cap(S, T ). Therefore F is a maximum flow and

(S, T ) is a minimum cut.

We have shown that if the algorithm ever terminates then it has found a maximum flow (and a

minimum cut). Can the algorithm run forever? Each augmentation in Step (3) actually increases the

flow by some non-zero amount, so the flow values are a monotonically increasing sequence. By Theorem

2.1, this sequence is bounded above by the capacity of any cut. If the capacities are integers then all

flows constructed by the algorithm have integer flows in each edge hence have an integer value. Since

there is no infinte, increasing bounded sequence of integers the algorithm must stop at some finite point.

Recall that we have assumed that the capacities are rational numbers. A similar argument can be used

(there will be an upper bound on the denominators); again the algorithm is sure to stop (see Exercise

2.5). Examples do exist of networks with irrational capacities and particular sequences of augmenting

paths that result in an infinite sequence of flows ([Lawler]); the algorithm does not stop in these cases.

This is not a very realistic example. In any case, if in Step (3) we are careful about which augmenting

path we choose then the algorithm will always terminate. Therefore for any network some sequence of

augmentations will lead the Augmenting Path Algorithm to a maximal flow. We summarize these results

in the following theorem.

Theorem 2.2 Suppose that N = (V,E) is a network with rational edge capacities ce ≥ 0. Then

(i) the augmenting path algorithm determines a maximal flow and a minimum capacity cut in a finite

number of augmentations,

(ii) if the capacities are integers then there is a maximum flow with integer flows in every edge.

Exercises

2.3 In the three networks below the number beside each edge is the capacity of that edge. In each case,

determine a maximal flow. Justify your claim that it is maximal.

(a)
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(b)

(c)

2.4 Give an example of a network which has at least two distinct maximal flows (of equal value, of

course!)

2.5 Give an example of a network with at least two distinct minimal cuts.

2.6 Show that the Augmenting Path Algorithm only makes finitely many augmentations in the case that

all capcities are rational ce ∈ Q.

2.7 Suppose that we have a network where in addition to the edge flow constraints there is a maximum

flow cv that can pass through any internal node v. Thus
∑

t(e)=v fe ≤ cv. Describe how to modify the

network so that this new problem is simply the standard Max Flow problem in the modified network.

[Hint: split each internal node in two.]

2.5 Implementation and Performance

Breadth first search

O(nm2).

2.6 Applications

Bipartite matching
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Interlude: Linear Program Formulations for Some Combinatorial Opti-
mization Problems

Linear Programming is a commonly taught and used form of optimization. In this area, one
tries to maximize or minimize a linear objective function subject to linear inequality contraints. In
fact some Combinatorial Optimization problems can be recast as LP problems which can then be
solved by standard LP algorithms. In some cases this is a fruitful approach, in others the number
of constraints required is so large that solving the problem as an LP is impractical. In this brief
interlude we will discuss how two combinatorial optimization problems can be solved through an
associated linear program.

Let G = (V, E) be a digraph where V = {v1, v2, . . . , vn} is the set of vertices, and E =
{e1, e2, . . . , em} is the set of arcs. The incidence matrix M of G is defined as follows. The rows of
M are indexed by the vertices, and the columns of M are indexed by the arcs. The entries of M
are all ±1 or 0. If ek = (ij) joins vi to vj , then Mik = −1 and Mjk = 1. In the following, each arc
(ij) is assigned a weight wij.

Potentials and the single source Shortest Path problem
Consider the problem of finding a minimum weight dipath from a source vertex s to other

vertices of G.
A vector ~g = [g1, g2, . . . , gn] is called a potential with respect to the weight ~w if

gj − gi ≤ wij (1)

Note that the above system of inequalities (1) can be rewritten using the incidence matrix M as

~gM ≤ ~w

For each v ∈ V , let yv be the weight of a minimum dipath from the source node s to a vertex v.
Suppose P : s = v0, v1, . . . , vk = v is a dipath with weight yv. Then we have

yv =
k−1∑

j=0

wvjvj+1 ≥
k−1∑

j=0

(
gvj+1 − gvj

)
= gv − gs

On the other hand, ~y itself is a potential (Exercise) and trivially ys = 0, so

yv = yv − ys ≥ gv − gs

for any potential ~g. Hence the value of yv is given by the maximum potential.
Define a vector ~c indexed by vertices with cv = 1, cs = −1, and cu = 0 for all u ∈ V − {v, s}.

So yv − ys = ~y~c and gv − gs = ~g~c. Then the following LP:

Maximize ~g~c subject to ~gM ≤ ~w (2)

has as its value the length yv of a minimal dipath from s to v. In the LP there is one constraint for
each arc. If the graph is reasonably sparse then this approach may well lead to an efficient solution
to the minimal dipath problem.

The dual of the above LP is, with variable vector ~h indexed by arcs:
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Minimize ~w~h subject to M~h = ~c, ~h ≥ 0. (3)

Each dipath P from s to v gives a feasible solution ~hP to this dual LP, which is called the
characteristic vector of P . It is defined by he = 1 for each arc e ∈ P , and = 0 otherwise. Then ~w~hP

is the weight of the dipath P . What LP Duality Theory tells us is that the minimum value of the
dual LP is equal to the maximal value of the primal LP and this value is the weight of a minimal
dipath from s to v. The minimal value of the dual LP is achieved by the characteristic vector of
a minimal dipath. There may be other optimal solutions of the dual that are not characteristic
vectors of dipaths.

We note though that an arbitrary vector ~h with components 0 or 1 which is dual feasible is a
characteristic vector of an s − v dipath. Indeed the matrix product M~h = ~c can be considered a
set of equations – one for each vertex u. The equation for this vertex (using the definition of M)

adds the components of ~h on arcs with u as head and subtracts the components with u as tail. The
definition of the vector ~c (value +1 at v , −1 at s and 0 elsewhere) ensures that if ~h is a 0−1 vector

feasible for the dual LP, then ~h is a characteristic vector of a dipath from s to v.
This discussion shows how the minimum path problem and the maximum potential problem can

be formulated as linear programs that are dual to each other.

Maxflow and Mincut problems
A network consists of a digraph G, a source node s and a sink node t in G, and a capacity

function c = {ce : e ∈ E}. A vector f = {fe : e ∈ E} is called a flow in G if

∑

h(e)=v

fe −
∑

t(e)=v

fe = 0, v ∈ V − {s, t} (4)

where t(e) and h(e) denote the tail and head of the arc e, respectively. Condition (4) is called the
flow conservation law . Note that the flow conservation law can be expressed as

M̂f = 0

where M̂ is the matrix obtained from the incidence matrix M by deleting rows corresponding to s
and t. The maximum flow problem can be formulated as the following linear program.

Maximize
∑

h(e)=t

fe −
∑

t(e)=t

fe subject to M̂f = 0, 0 ≤ f ≤ c

The augmenting path algorithm is a primal algorithm, since at each step it maintains a feasible
flow and improves towards getting a dual feasible solution (a saturated cut).

The preflow-push algorithm can be viewed as a dual algorithm, since at each step it mains a dual
feasible solution (saturated cut), and improves towards getting a primal feasible solution (feasible
flow).

The LP formulation of transportation and assignment problems is straightforward. One usually
uses a primal (simplex) algorithm to solve the transportation problem, and uses a dual algorithm
to solve the assignment problem (such as Kuhn’s Hungarian method).
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Chapter 3

Maximum Flow by Preflow-Push

3.1 Pre-flows and Distance Labellings

The Augmenting Path Algorithm of Chapter 2 maintains a feasible flow at each stage. The value of the flow

is steadily increased until a saturated cut has been formed. This is the signal that the flow has a maximum

value. An alternate approach is used by the preflow-push algorithms. These algorithms maintain at all

stages a feasible pre-flow (a “flow” without flow conservation) that has a saturated cut. The pre-flow is

changed step by step until it does satisfy flow conservation. The resulting flow then has a saturated cut so

is a maximum flow.

Suppose that N is a network with edge capacities cab and P = {pab} is an assignment of flow to the

edges of N . Then P is a preflow if at each internal node v 6= s, t, we have
∑

h(e)=v pe ≥
∑

t(e)=v pe. Thus

we assume that, at each internal node, the flow in is at least as large as the flow out. The excess flow at v

is defined by

ex(v) =
∑

h(e)=v

pe −
∑

t(e)=v

pe =
∑

w

pwv −
∑

u

pvu.

Of course, if ex(v) = 0 for all internal nodes v then P is a flow. We call P a feasible preflow if, in addition,

0 ≤ pe ≤ ce. Our general strategy is to start with an initial preflow then successively modify the flows on

various edges so that at all times the preflow is feasible and moves steadily toward satisfying flow conservation.

Suppose we have a network N with a preflow P = {pab}. If there is an internal node with positive excess

ex(a) > 0 then we would like to push this flow away from a and toward the sink t. If we can somehow push

all the excess flows to the sink then we will have a maximum flow. If we want to push excess flow from a to

b then we can do it forward along ab if pab < cab or backwards along ba if pba > 0 or both. A push on ab is

performed by moving up to ex(a) units of flow from a to b with up to cab − pab units moving forward on ab

and up to pba units moving backward on ba. Once a push along ab has been performed, the excess ex(a) at

a will decrease while ex(b) will increase.

Figure 3.1 A simple preflow

As an example, consider the simple network in Figure 3.1. There are 6 excess units at a. We can push
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all 6 units along ab with 4 units moving foward along ab and 2 units moving backward along ba. The result

is shown in Figure 3.2. The preflow now satisfies flow conservation at a but not at b.

Figure 3.2 The preflow after pushing on ab

There might be several different ways to perform a push along ab. If, in the example, we were only

pushing away an excess of 3 units there would not be enough new flow both to saturate ab and to empty

ba; there would be a choice to make. Moreover, the push on ab might not exhaust the excess at a so that

further pushes are needed at a. The simple network fragment in Figure 3.3 illustrates the point. To move

all 7 excess units away from a will require pushes on several edges. An actual implementation will have to

include rules that decide which edges to use and in what order and also which nodes to work on.

Figure 3.3 A preflow in a network fragment

Suppose we start with a preflow in our network and randomly push excess flow away from nodes. So

far there is nothing to stop us from pushing the excess flow around in a cycle or even straight back where it

came from. Pushing flow is an entirely local event; we need a global tool to direct our progress from preflow

to flow.

A distance labelling λ assigns to each node v an integer λ(v). The conditions that makes λ(v) a distance

labelling are that: λ(s) = n = |V |, λ(t) = 0 and if edge ab is available for a push then λ(a) ≤ λ(b) + 1. So

we insist that, whenever pab < cab or pba > 0 we have λ(a) ≤ λ(b) + 1.

For any network N it is possible to define a feasible preflow P and corresponding distance labelling

λ as follows. For every edge sa leading out of the source, set psa = csa. For all other edges set pab = 0.

Certainly 0 ≤ pe ≤ ce for all edges e. At an internal node v that is not the head of an edge from the source

we have all preflows in and out equal to zero, so ex(v) = 0. If, on the other hand, there is an edge sv, then

ex(v) = csv ≥ 0. Therefore P is indeed a feasible preflow. Using this preflow, a valid labelling is obtained

by setting λ(s) = |V | and λ(v) = 0 for all other vertices. With this definition, λ(a) = λ(b) unless a or b is

the source s. The edges sv are not available for a push since psv = csv and pvs = 0. Therefore the definition

of distance labelling is satisfied by λ.
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Figure 3.4 illustrates these ideas. The edge labels are in the order ce, pe and the numbers at the vertices

form the distance labelling.

Figure 3.4 The Initial Preflow and Labelling of a Network

In Figure 3.4, the partition S = {s}, T = {a, b, c, d, t} defines a saturated cut since all the edges coming

out of the source are saturated and had there been an edge directed into the source it would be empty. As

mentioned earlier, the existence of such a saturated cut is a general phenomenon. We complete this section

with a proof of this fact.

Theorem 3.1 Suppose that network N has a feasible preflow P and a distance labelling λ. Then there is

a cut (S, T ) with every edge of δ(S) saturated and every edge of δ(T ) empty

Proof. Since there are n = |V | nodes in the network then amongst the n + 1 integers 0 . . . n, there is at

least one integer k which is not used in the labelling. Let S = {v|λ(v) > k} and T = V \ S. So s ∈ S and

t ∈ T . Also, for any edge e = ab with a ∈ S and b ∈ T , we have λ(a) > k > λ(b). But then λ(a) > λ(b) + 1.

By the definition of a distance labelling, this edge must be not admissible. Hence ab is saturated and ba is

empty as required.

This theorem says that any feasible preflow with a distance labelling has a saturated cut. For the

special case of a flow, the Max-Flow Min-Cut Theorem then gives the following corollary which establishes

the stopping condition for the preflow-push algorithms.

Theorem 3.2 If a feasible flow F has a distance labelling then F is a maximum flow.
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3.2 Preflow Push Algorithms

In this section, the ideas of preflow and distance labelling on a network will be fashioned into an algorithm

for the maximum flow problem called the Preflow Push Algorithm. In fact, several of the details required for

implementing Preflow Push can be specified in different ways so this can be considered a class of algorithms

based on a central theme that we develop here.

We have a network N with a preflow P and a distance labelling λ. At each internal node v there is

some excess flow ex(v). As before we denote the capacity of the arc ab by cab while the preflow on this edge

is pab.

We will call an edge ab an available edge if either ab or ba is an arc of N and either pab < cab or

pba > 0 or both. Thus an available edge is a candidate for a push operation. Note that the availability of

an edge depends on the preflow; as the preflow is changed a given edge ab may gain or loose this status.

The maximum amount that can be pushed along an available edge ab is c̃ab = cab − pab + pba. The key to

controlling the pushing of flow is to define an available edge ab to be admissable if and only if λ(a) = λ(b)+1.

The Preflow Push Algorithm allows pushes only on admissable edges.In Figure 3.5, edges va, vb, vc and vd

are available but only vb and vc are admissable. Note also that if we shift attention to a the edge av is

admissible. From the definition, if an edge uv is admissible then edge vu is definitely not. Thus the labelling

tells us a direction to push flow.

Figure 3.5 Available and admissible edges at v

The final ingredient for the algorthmn is relabelling . If, in Figure 3.5, we want to push excess flow from

v to a, this will not be possible unless the labels change so that va is admissable, that is λ(v) = λ(a) + 1.

Therefore some relabelling procedure is required.

The Preflow Push algorithm is based on the following local routine that operates on the excess flow at

a single vertex.

Process(v)

1. Start with an active node v (so ex(v) > 0).

2. Pick an admissible edge va.

3. Push min{ex(v), c̃va} additional flow along va.

4. Repeat Steps 2 and 3 until either ex(v) = 0 or there are no more admissible edges.
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5. If ex(v) > 0 and there are no admissable then relabel v as follows. Set

λ(v) = min{λ(a) + 1|va is an available edge}

This will produce at least one admissible edge; return to Step 2. Note that since ex(v) > 0 this excess flow

must have arrived on some arcs that are now available for a push.

6. If ex(v) = 0 then v is no longer active and we are finished processing v.

With this routine in hand, the Preflow Push algorithm can be simply stated.

Preflow Push Algorithm

1. Initialize: define an initial preflow and distance labelling on N

2. While an active node v remains: Process(v).

3. The preflow is now a maximum flow.

Example 3.1

The example in Figure 3.6 is an extremely simple, indeed linear, network. It is transparent that the

maximum flow value is 3. Nevertheless, it is a useful first example of pushing and relabelling.

Figure 3.6 A simple example (Edge labels are capacities.)

λ(s) psa ex(a) λ(a) pab ex(b) λ(b) pbt ex(t) λ(t)

initialization 4 8 8 0 0 0 0 0 0 0

process(a) relabel a 4 8 8 1 0 0 0 0 0 0
push on ab 4 8 4 1 4 4 0 0 0 0
relabel a 4 8 4 5 4 4 0 0 0 0
push on as 4 4 0 5 4 4 0 0 0 0

process(b) relabel b 4 4 0 5 4 4 1 0 0 0
push on bt 4 4 0 5 4 1 1 3 3 0
relabel b 4 4 0 5 4 1 6 3 3 0
push on ba 4 4 1 5 3 0 6 3 3 0

process(a) push on as 4 3 0 5 3 0 6 3 3 0
STOP: maximum flow 3 3 3

Example 3.2

As a second example, we will use Preflow Push to determine a maximum flow in the network of Figure

3.4. In this example, the next node to be processed is choosen arbitrarily among the current active nodes.

1. Initialize the preflow and labelling.
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2. Relabel a: λ(a) = 1

3. Push on ab: pab = 10, ex(a) = 0

4. Relabel c: λ(c) = 1

5. Push on cd: pcd = 6, ex(c) = 6

6. Relabel c: λ(c) = 2

7. Push on ca: pca = 5, ex(c) = 1

8. Relabel c: λ(c) = 7

9. Push on cs: psc = 11, ex(c) = 0

10. Relabel b: λ(b) = 1

11. Push on bt: pbt = 3, ex(b) = 7

12.Push on bd: pbd = 7, ex(b) = 0

13. Relabel d: λ(d) = 1

14. Push on dt: pdt = 13, ex(d) = 0

15. Relabel a: λ(a) = 2

16. Push on ab: pab = 15, ex(a) = 0
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17. Relabel b: λ(b) = 2

18. Push on bd: pbd = 8, ex(b) = 4

19. Relabel b: λ(b) = 3

20. Push on ba: pab = 11, ex(b) = 0

21. Push on dt: pdt = 14, ex(d) = 0

22. Relabel a: λ(a) = 4

23. Push on ab: pab = 15, ex(a) = 0

24. Relabel b: λ(b) = 5

25. Push on ba: pab = 11, ex(b) = 0

26. Relabel a: λ(a) = 6

27. Push on ab: pab = 15, ex(a) = 0

28. Relabel b: λ(b) = 6

29. Push on ba: pab = 11, ex(b) = 0

30. Relabel a: λ(a) = 7

31. Push on as: psa = 6, ex(a) = 0

32. STOP: No active vertices remain.

On such a small example it is easy to see ways the algorithm could have taken a short cut. For example,

the relabelling loop between nodes a and b is a candidate. The problem is that the distance labels are our

global control, but we are modifying them locally. One way of improving performance is to periodically

calculate a new distance labelling for the entire network. This is discussed further in the next section.

Before leaving this example, locate in each of the displayed networks the saturated cut guaranteed by

Theorem 3.1.
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3.3 Performance

Correctness and Worst-case Analysis

In order to show that the Preflow-Push algorithm is correct, we must show that the algorithm stops in a

finite number of steps with a maximum flow. Since we can estimate the number of steps used, the correctness

proof also yields a worst-case estimate at the same time. To simplify the discussion, we will analyze the

instance of Preflow-Push that always picks an active vertex with maximal label for processing.

There are several facts to be checked. First, we must show that the algorithm maintains both a valid

feasible preflow and a valid distance labelling at each stage. The next component of the analysis is the proof

that, if there are n nodes, then the algorithm takes at most 2n2 relabel steps and at most 2n3 push steps.

Finally, we show that the algorithm doesn’t stop while there is an active node. Theorem 3.2 ensures that

when the algorithm does stop it has determined a maximum flow.

The argument that the algorithm always maintains a valid feasible preflow is straightforward (Exercise

3.1). The key property of a distance labelling is that λ(a) ≤ λ(b) + 1 for any available edge ab. A push step

does not change the labels so the only risk to the distance labelling would be from an edge becoming available.

Suppose that some push step changes the status of an edge ab from unavailable to available. It must have

been a push along ba that did this so edge ba was admissable before that push. Hence λ(b) = λ(a)+1. Then

λ(a) = λ(b) − 1 < λ(b) + 1 as required. Relabelling is specified by an assignment

λ(v) = min{λ(a) + 1|va is an available edge}

This ensures that after the relabelling λ(v) ≤ λ(a) + 1 for any available edge va. The only other case to

checkis an available edge bv. But before the relabel λ(b) ≤ λ(v) + 1 which remains valid since the label on v

has increased (Exercise 3.2).

The following lemma bounds the number of relabel steps.

Lemma 3.3 If v is an active node then λ(v) ≤ 2n− 1

Proof. The key is that if v is an active node then there is a sequence

v = v0v1 · · · vk = s

of nodes leading back to the source with each edge vivi+1 available. Clearly k can be taken less than n. The

result follows from this since the definition of distance labelling says that λ(vi) ≤ λ(vi+1)+1 for all i so that

λ(v) ≤ λ(s) + k ≤ n + (n− 1) = 2n− 1.

Let S be the set nodes for which such a sequence v = v0v1 · · · vk = s exists and let T = V \ S be the

complement. Our goal is to show that all active nodes are in S or equivalently that there are no active nodes

in T . Focus on the sum
∑

v∈T ex(v) ≥ 0. As usual, we expand, change the order of summation and collapse

to get

0 ≤
∑

v∈T
ex(v) =

∑

v∈T

(
∑

a∈V
pav −

∑

b∈V
pvb

)
=

∑

a∈S,v∈T
pav −

∑

v∈T,b∈S
pvb ≤

∑

a∈S,v∈T
pav .
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By the definition of S the preflows pav in the last sum are all 0. This forces
∑

v∈T ex(v) = 0 and therefore

all nodes in T are inactive.

Since there are n− 2 nodes that can be relabelled and each can be relabelled at most 2n− 1 times the

number of relabels steps is at most (n− 1)(2n− 1) < 2n2.

Having counted the maximum possible number of relabel steps, we next consider the push steps. If

you look back at Example 3.2 you will notice that there are two types of pushes used by the algorithm.

Some pushes at node a reduce c̃ab to 0 either by making pab = cab or by making pba = 0 while leaving a

active. These are called saturated pushes. If, on the other hand, ex(a) < c̃ab then only ex(a) can be pushed,

leaving ab available. These are called unsaturated pushes. After a saturated push along ab, the edge ab is

unavailable; after an unsaturated push along ab, the node a is inactive. It is convenient to count the number

of saturated and unsaturated pushes separately.

Lemma 3.4 If the Preflow-Push algorithm always processes a node with maximal distance label then the

number of unsaturated pushes is less than n times the number of relabels

Proof. Suppose that there is an unsaturated push at a node v. Then this node is now inactive and by

assumption λ(v) ≥ λ(w) for any other active node w. Before we can process node v again, more flow will

have to be pushed to v. If this flow is pushed from node w, say, then wv is admissible at that moment and

node w will have to be relabelled at some point to make λ(w) = λ(v) + 1. This shows that between two

unsaturated pushes at node v some node gets relabelled. Since there are n choices for v the result follows.

Lemma 3.5 The total number of saturated pushes on a given edge ab is at most n

Proof. We show that between two saturated pushes on ab the distance label on a increases by at least 2.

The result will then follow from Lemma 3.3. Suppose that the algorithm performs a saturated push on ab.

Then, by definition, ab is no longer available. Before ab can be available again, there must be a push on ba.

We use λ for the distance labels at the time of the first push on ab, and λ′ for the labels at the time of the

push on ba. Finally we denote by λ′′ the distance labels at the time of the next saturated push on ab. Thus

λ(a) ≤ λ′(a) ≤ λ′′(a) and λ(b) ≤ λ′(b) ≤ λ′′(b). Then using the definition of an admissible edge we have

λ′′(a) = λ′′(b) + 1 ≥ λ′(b) + 1 = λ′(a) + 2 ≥ λ(a) + 2.

Since there are n(n− 1) ordered pairs of nodes potentially defining edges for a push, the total number

of saturated pushes is at most n2(n− 1) < n3. Combining all of this analysis gives the following result.

Theorem 3.6 If the Preflow-Push algorithm is implemented so as to process next a node with maximal

label then there are at most 2n2 relabel steps and at most 3n3 pushes. In particular, the algorithm stops with

a maximum flow in a finite number of steps.
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It is only a bit harder to analyze the general Preflow-Push algorithm. See [BILLS] or [GOLDBERG1]

for a full acount.

Practical Performance

Exercises

3.1 Show that, in the Preflow-Push algorithm each step maintains a valid feasible preflow.

3.2 Show that in the relabel step λ(v) = min{λ(a) + 1|va is an available edge} the label λ(v) increases.

3.3 In Example 3.2, identify both a saturated push and an unsaturated push.
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Chapter 4

Min-cost Flows

4.1 Minimum Cost Flow Problems

In a typical network, the cost of using the various links varies from arc to arc. The cost of using a satellite,

optical fiber or copper wire is not the same. This leads to the simple question: How can we find, in a network

with arc capacities and arc costs, a minimum cost flow of a given flow value? For example, consider the

network in Figure 4.1.

Figure 4.1 A network with arc capacities and costs

The triple on each arc (fij , cij , dij) denotes the flow in the arc, the maximum capacity of the arc and the

cost per unit flow of using the arc. The flow in the example has value 10 and cost 6·3+4·6+5·4+1·2+5·3 = 79.

Suppose now that the unit of flow down arc ab is diverted into arc at while the flow in arc bt is reduced to

4 (see Figure 4.2). The result is again a flow of value 10, but the total cost is reduced to 78.

Figure 4.2 The same network with an alteration in the flow pattern

What is the minimum cost of a flow with value 10 in this network and how can we determine such a

min-cost flow? This is the central question of this chapter.

The general problem of determining a minumum cost flow with a given value is more complex than the
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max-flow problem. We now have two constraint parameters, capacity and cost, attached to each arc. These

parameters constrain the problem in different ways. We will present two different approaches to the min-cost

problem. In simple terms, one method works with a flow of given value and tries to modify it into a flow of

the same value and lower cost. The second approach is to incrementally build up the flow from 0 in such a

way that at each stage we have a min-cost flow of the current value. When the flow value reaches the target

value, we have a min-cost flow.

Again we have the basic optimality duality appearing. We can either work with feasible instances and

move toward the optimality condition or we can work with infeasible instances satisfying the optimality

condition and move toward a feasible instance.

One straightforward approach to the min-cost flow problem is to build up flow from zero using the

least cost augmenting path available at each stage. Define the cost C(P ) of an s–t path P as the net cost

obtained by adding the costs of the forward arcs and subtracting the costs of the reverse arcs. Thus C(P )

is the increment in the flow cost when a unit augmentation follows P . If the network happens to contain a

negative cost “augmenting” circuit, we can pass flow around this circuit lowering the cost of the flow without

changing the value. This process will stop when some arc of the circuit becomes saturated or empty.

Algorithm Build-Up

1. Initialize with flow 0 in each arc.

2. Find a minimum cost augmenting path P or a negative cost augmenting circuit D.

3. Augment the flow along P or D as much as possible . Stop if the flow value reaches v.

4. Go back to Step 2.

It turns out that this “greedy” approach works; for a proof see [POP & STIEG, page 142] for example.

This is a theoretical success but actually just reduces the problem to finding minimum cost augmenting

paths. One way to find such paths is to define a related network where the augmenting paths of the original

network now become simple directed paths in the new incremental network . Once this is done, minimum

cost augmenting paths become shortest d-paths and a standard algorithm can be used. We take up the

discussion of the incremental network in the following Section.
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4.2 The Incremental Network

We have seen that the search for an augmenting path must allow adges going both forward and backward.

There is a straight forward transformation of the network that allows us to work with forward edges only.

This incremental network is useful for the min-cost flow problem. It is defined as follows.

Suppose that F is a flow in a network N with arc capacities cij . If F places flow fij on arc ij then an

augmenting path can add up to cij − fij more units of flow to this edge when the arc is used as a forward

edge and can add up to fij units of flow if the arc is used as a backward edge.

Define a new network N (F) on the same nodes as N but with modified capacities. For each arc ij

define the reduced capacities as:
c̃ij = cij − fij

c̃ji = fij

The cost of arc ij is dij while the cost of using arc ji in N (F) is −dij . Thus the incremental network is

coding the backward edges as negative costs. The new network does not yet have any flow assigned to its

arcs.

Figure 4.3 Specification of the incremental network

Figure 4,4 illustrates the incremental network derived from the first example, Figure 4.1.

Figure 4.4 The incremental network of Figure 4.1

The definition of the incremental network implies that an s− t di-path in N (F) corresponds to an s− t

augmenting path in the original network N . If the cost of the s − t di-path in N (F) is x then making

an augmentation of one unit along this path, in N , will increase the flow by 1 unit and the cost by x.

Another feature of incremental networks is that since they can have negative cost edges they can also have

negative cost di-cycles. Consider the example of an incremental network N (F) in Figure 4.5. The cycle
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a → b → d → c → a has a total cost 2 + 3 − 10 + 2 = −3. Moving flow around this cycle will preserve the

flow conservation condition and hence keep the flow at the same value. At the same time each additional

unit of flow around the cycle will reduce the cost by 3. Of course, eventually we will saturate or empty some

arc and the cycle will disappear from the incremental network. This illustrates the importance of negative

cost cycles in min-cost flow algorithms.

Figure 4.5 A negative cost cycle

4.3 An Algorithm for Min-cost Flow

With the concept of incremental network in hand, we can now specify an algorithm for the min-cost problem.

At the end of the last section,the importance of negative cost cycles was emphasized. In fact, this is the key

to our first algorithm.

We are to find a flow of value v in a network N which has minimum cost. First we find some flow F of

value v using any max-flow algorithm. Next we construct the incremental network N (F) and search for a

negative cost cycle. In Chapter 1, we studied an algorithm that can do this. Once we have a negative cost

cycle we modify the flow F by passing flow around this cycle of N (F). Each change in the flow F produces

a change in the incremental network. Eventually some arc of the cycle drops out of N (F) because it is now

saturated or empty in N . The process is repeated until a flow F has been reached such that there are no

negative cost cycles in N (F). This is an optimal flow.

Min-Cost Flow by Cycles

1. Use a max-flow algorithm to determine a flow of value v.

2. While there is a negative cost cycle C in the incremental network N (F), augment flow around C until

the cycle is no longer part of N (F).

The algorithm stops if and when it finds a flow F which produces an incremental network N (F) with no

negative cost cycles. This leaves us with two basic questions. Does this final flow F indeed have minimum

cost for a flow with value v? Is it possible that the algorithm can always find another negative cost cycle

and runs on forever? These are the basic algorithmic questions of termination and correctness.

The answer to the first question is yes though we will postpone a proof until later. The answer to

the second question depends on the original network. If the costs are all non-negative and the costs and
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capacities are rational numbers (as we have assumed throughout) then there are only finitely many flows of

any given value and each has a non-negative cost. Since the algorithm maintains the value of the flow and

actually reduces the cost on each iteration, only a finite number of iterations can take place. So under these

assumptions the algorithm terminates. We can generalize this argument to allow negative cost arcs as long

as there is no negative cost cycle with infinite capacity.

EXAMPLE

As an example, let us use the Min-cost Flow by Cycles Algorithm to find a minimum cost flow of value

4 in the network of Figure 4.6. This network is already showing a feasible flow, that is, a flow of value 4.

Its cost is 112. In the figures below the labels on the original network are (flow,capacity,cost) while on the

incremental networks they are (capacity,cost).

Figure 4.6 An example network and associated incremental network

The incremental network on the right has a displayed negative cost cycle that we use to modify the flow.

Around this cycle, we move 4 units of flow resulting in the network in Figure 4.7. After this first iteration,

the flow still has value 4 but now has cost 100.

Figure 4.7 After one iteration.

Again the incremental network is constructed. A search discovers a negative cost cycle b → t → d → b

and the flow is modified around this cycle. The network on the left in Figure 4.8 shows the resulting flow of

value 4 and cost 72.

Figure 4.8 After two iterations.
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The incremental network is produced (on the right in Figure 4.8) and this time there are no negative

cost cycles. So after two iterations the algorithm stops. It has found a minimum cost flow of value 4. Note

that if our routine that finds the negative cost cycles had been able to return a “most negative” cost cycle

we would have used a → b → t → d → c → a and reached the answer in one iteration.

4.4 The Network Simplex Algorithm

The Cycle Algorithm for Min-cost Flows does not, in practice, have good performance. In this section we

will study a different algorithm that also looks for negative cost cycles, but is able to restrict and control the

search to produce a very efficient result. The Network Simplex algorithm can be viewed as a straightforward

translation of the standard linear programming Simplex Algorithm to the network context. Our approach,

however, is to build up a combinatorial description of the algorithm.

Consider the network in Figure 4.9. The arc labels are in the standard order (flow, capacity, cost). The

flows assigned to the arcs determine a feasible flow of value 10. In this network the solid arcs form a spanning

tree. The arcs outside of this tree are each either empty or saturated. This is a special situation which we

can exploit to efficiently move to an optimal flow. The key point is that if we add any one new arc to the

tree, we create a unique cycle. By working through the arcs outside the tree, we can move through a set of

cycles looking for a cycle with negative cost. If we find one then, as in the Cycle algorithm, we can pass flow

around this cycle to reduce the overall cost up to the point where the cycle is broken. At that point the tree

changes and we can start again.

There are several difficulties to overcome, of course. How do we find the initial tree solution? Why are

we sure that a negative cost cycle of this apparently special type will occur whenever the flow is non-optimal?

Before addressing this questions, though, we will give a formal presentation of the algorithm.

Figure 4.9 A Network with a Tree Solution

Suppose that N is a network with capacities and costs assigned to its arcs. Suppose also that a feasible
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flow has been assigned to the arcs. A tree solution is a spanning tree T on the arcs of N with the property

that fe = 0 or fe = ce for each arc e not in the tree.

Since T is a tree there is a unique path in T from s to each of the nodes of N ; let yv denote the cost of

the path in T from s to v. Now for an arc e = vw define its reduced cost ce by

ce = ce + yv − yw.

Referring to Figure 4.9, the paths in T from s to v and w will overlap for some initial segment and then

split into distinct paths (at node u in the figure). When the arc e is added to the tree, a cycle is formed,

passing through u by dropping out this common segment and the bits of the tree beyond v and w. Denote

by C(T, e) the cycle formed in this way. As the algorithm proceeds, we can use C(T, e) to rearrange flows

with e forward if this arc is empty and with e reversed if it is saturated. The reduce cost ce is the cost of

C(T, e) interpreted as a cycle using arc e in a forward direction. If C(T, e) is used in the opposite direction,

with arc e reversed, then the cost is −ce. Thus our search for a negative cost cycle will be successful if we

ever find an arc outside the tree T with reduced cost ce < 0 if e is empty or with ce > 0 if e is saturated.

Figure 4.10 Definition of the Reduced Cost

Min-Cost Flow by Network Simplex

1. Determine an initial tree solution T of value v.

2. Calculate the function y(w) (cost of path from source to w in T ).

3. Look for an arc e not in T such that either e is empty and ce < 0 or e is saturated and ce > 0. If there

are no such arcs then stop. T is optimal.

4. Otherwise, calculate the maximum flow that can be passed around the cycle C(T, e) in a forward

direction if e is empty or in the reverse direction if e is saturated. Make this augmentation around the

cycle. Some arc h will become empty or saturated in the process. (This arc h may be in the tree or it

may be that h = e.)

5. If h is an arc of the tree then construct a new tree by adding e and deleting h. Update the function

y(w). (If h = e then it is not a candidate for selection in Step 3 at the next iteration.)

6. Return to Step 3.
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Those familiar with the linear programming Simplex algorithm will hear echos in the Network Simplex

Algorithm. Steps 1 and 2 are the initialization step corresponding to finding an initial feasible basis for

the LP problem. Then Step 3 corresponds to determining an entering variable while Steps 4 and 5 are the

analogues of fixing a leaving variable and pivoting.

Next we look at why this algorithm works. It is clear from the earlier discussion that the augmentation

carried out in Step 4 will result in a feasible flow of the same value but lower cost. So once we get going

each iteration will move us closer to an optimal solution. But how do we get started? In the proof below a

critical arc is an arc that is either empty or saturated.

Theorem 4.2 If a network has a feasible flow then it has a tree solution. If a network has a minumum

cost feasible flow then there exists a tree solution which is optimal.

Proof.

Suppose that F is a feasible flow. If there is a cycle C in which every arc is non-critical, so 0 < fe < ue,

then an augmentation in one direction or the other is possible that will not change the flow value, will

not increase the cost and will result in at least one arc becoming critical. (One says “not increase” rather

than “decrease” since the cycle may have cost zero.) After this augmentation, the number of cycles without

critical arcs has decreased. Eventually we will have a situation where all cycles in the network contain at

least one critical arc, the flow has not increased in cost and the flow has retained the same value.

So suppose now that all cycles of the network contain at least one critical arc. We want to identify a

spanning tree T such that all edges not in T are critical. As in one of the standard spanning tree algorithms,

while there is still a cycle C , we delete a critical arc fron C. When no cycles remain, the arcs left behind

form the required spanning tree.

If we started with a minimum cost flow, this process would produce a flow with the same cost. Hence

an optimal tree solution exists.

In some sense, the proof of the theorem is an algorithm for initializing the Network Simplex algorithm.

There is actually quite a bit to say about implementation. See [CHVATAL].

Example

Lets return to the network at the beginning of this section and search for a minimum flow of value 10.
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Figure 4.11 Network Simplex Example: start

node s a b c d e f t

y = 0 15 9 11 11 17 13 25

In the first iteration the arc ba is chosen; it is empty with reduced cost cba = 2 + 9 − 15 = −4. This

determines the cycle b− a− s− b. Then 3 units of flow are passed around this cycle reducing the cost of the

flow by 12. This saturates arc sb which moves out of the tree with he result as shown in Figure 4.12.

Figure 4.12 Network Simplex Example: first iteration

node s a b c d e f t

y = 0 15 13 15 15 21 17 29

At the second iteration, the saturated arc dc is selected; the reduced cost here is cdc = 12+15−15 = 12.

Using the arc dc backwards we pass 1 unit of flow around the cycle d − b − c − d. This reduces the cost of

the flow by 12. The arc dc enters the tree while arc bd leaves. The result is Figure 4.13.

Figure 4.13 Network Simplex Example: second iteration

node s a b c d e f t

y = 0 15 13 15 3 21 17 29

Is this an optimal flow of value 10? We leave that to an exercise.

Exercise

4.1 Complete the example. Are we done or is there another arc that can enter the tree?
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This is the basic Network Simplex algorithm. There are several issues left unresolved. We need an

efficient way to find an initial tree solution. One way is to add arcs that form a spanning tree but have such

a high cost that the solution cannot contain any of them. We start with flow zero in all the original arcs,

and the desired flow along the artifical arcs forming the path from s to t. Now start the algorithm which

will toss out all the artifical arcs on the way to an optimal solution.

We should also be concerned, at some level, about cycling. This is the phenomenon where we end up in

an endless round of iterations on zero cost cycles that keep bringing us back to the same non-optimal tree

solution. This is theoretically possible and there are ways of implementing the algorithm that avoid cycling.

It rarely occurs in practice. See for example [BILLS] and [CHVATAL].
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